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Abstract—As a typical application of the Internet of Things
(IoT), the Industrial Internet of Things (IIoT) connects all the
related IoT sensing and actuating devices ubiquitously so that
the monitoring and control of numerous industrial systems can
be realized. Deep learning, as one viable way to carry out
big data-driven modeling and analysis, could be integrated in
IIoT systems to aid the automation and intelligence of IIoT
systems. As deep learning requires large computation power, it is
commonly deployed in cloud servers. Thus, the data collected by
IoT devices must be transmitted to the cloud for training process,
contributing to network congestion and affecting the IoT network
performance as well as the supported applications. To address
this issue, in this paper we leverage fog/edge computing paradigm
and propose an edge computing-based deep learning model,
which utilizes edge computing to migrate the deep learning pro-
cess from cloud servers to edge nodes, reducing data transmission
demands in the IIoT network and mitigating network congestion.
Since edge nodes have limited computation ability compared to
servers, we design a mechanism to optimize the deep learning
model so that its requirements for computational power can
be reduced. To evaluate our proposed solution, we design a
testbed implemented in the Google cloud and deploy the proposed
Convolutional Neural Network (CNN) model, utilizing a real-
world IIoT dataset to evaluate our approach1. Our experimental
results confirm the effectiveness of our approach, which can
not only reduce the network traffic overhead for IIoT, but also
maintain the classification accuracy in comparison with several
baseline schemes.

Keywords—Industrial IoT, Edge Computing, Fog Computing,
Distributed deep learning.

I. INTRODUCTION

The fourth industrial revolution, known as Industrial Internet
of Things (IIoT), is a realization of the Internet of Things
(IoT) [1], [2] in a variety of manufacturing systems, intro-
ducing a massive number of IoT devices and computation
nodes in production lines and manufacturing processes so that
the monitoring and control of manufacturing systems can be
realized. In an IIoT system, as a typical cyber physical system,
the key to realizing automation and intelligence is through
big data analysis driven by big computing and big modeling
provided by learning techniques such as deep learning [3].

1Certain commercial equipment, instruments, or materials are identified in
this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the best available
for the purpose.

In a traditional way, IoT devices collect data and send it to
servers that have high computing capabilities for performing
deep learning process. Then, the servers analyze the data
and send control messages to IoT devices [4]. Due to the
interactions between servers and IoT devices, massive amounts
of data need to be transmitted through the IoT network, raising
significant data transmission overhead to the network. As a
number of IIoT systems are time sensitive, the large increase
in network traffic causes high network latency and large packet
loss, significantly affecting the performance of IIoT systems.
Thus, how to optimize network performance while providing
sufficient big data analytics becomes a critical problem in IIoT
systems.

Edge (or Fog) computing has emerged as a new paradigm to
offload computation tasks from the cloud to the edge. Unlike
traditional cloud computing, in which tasks are offloaded to
remote cloud datacenters, edge computing assigns computation
tasks to multiple edge nodes that are deployed close to end
users. Thus, edge computing is capable of reducing data
transmission and network traffic between cloud servers and
IoT devices (sensors, actuators, etc.) [5], [6], [7]. In an
IIoT system, we can utilize edge computing to offload the
computation tasks and reduce the network traffic as well.
Although there are some existing studies toward increasing
the network bandwidth or optimizing the data transmission,
there is lack of research on how to carry out computing task
offloading in IIoT.

Deep learning, as the useful big data-driven analytics
scheme, has shown great potential in a number of areas,
including image/video recognition, robotics, and natural lan-
guage analysis, among others [8], [9]. Nonetheless, as deep
learning requires high computation power to analyze the
datasets, it is generally deployed in cloud servers, which
have high computation capabilities. In addition, to obtain
accurate results, large datasets are generally required. Thus,
when deploying deep learning in the cloud to support IIoT
systems, the massive data exchanged between servers and
IoT devices could cause network congestion and affect IIoT
systems that are commonly latency-sensitive. While deploying
deep learning to the edge is a natural solution, it raises new
challenges due to the limited computing ability of edge nodes.
Thus, it is critical to design an effective deep learning model
that can be used on edge nodes.

To address the aforementioned issues, in this paper we
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propose to leverage edge computing to conduct deep learning
on edge nodes in IIoT systems. To demonstrate our idea,
we design an IIoT scenario that utilizes the deep learning
technique to classify different industrial components. We focus
on offloading the deep learning process from the cloud to
the edge so that network traffic congestion can be mitigated
in IIoT systems. We design the edge-based Convolutional
Neural Network (CNN) by leveraging the CNN model to
classify the components. We propose a distributed CNN model
where we deploy to edge nodes. The edge nodes execute the
CNN training process and send the training results to the
parameter server in the cloud. Using our designed model, we
can significantly reduce the amount of the data transmitted
through the network, leading to the improvement of network
performance.

In our study, we make the following contributions:
First, we propose a novel edge-based CNN model to offload

computation tasks. By doing this, IoT devices do not need
to send raw data to a centralized server, thereby significantly
reducing network traffic. Furthermore, in order to deploy the
CNN model to the edge, we optimize the existing CNN
model in Section IV. We also mathematically evaluate the time
complexity of the proposed model and develop a mathematical
model to illustrate how to deploy the proposed CNN model
to edge computing nodes in Section IV.

Second, we evaluate network performance in an IIoT sys-
tem. We design a mathematical model to analyze the network
delay and packet loss rate in both edge-based CNN and
centralized CNN cases. Overall, based on the specific IIoT
scenario, we propose an edge-based CNN model to improve
system performance. Since finding the optimal deep neural
network configuration for a particular data set mathematically
remains an open question, we leverage a combination of
mathematical and experimental approaches to confirm the
superiority of our model.

Third, we design an experimental testbed in Google Cloud
to simulate the distributed environment in Section VI. To
ensure a fair experimental comparison, we calculate the com-
putation capability of edge nodes in the testbed. Thus, based
on the calculation of time complexity for the different CNN
models and the computation capability of the edge nodes,
we can systematically analyze the performance of each CNN
model and obtain meaningful results.

The remainder of this paper is organized as follows: In Sec-
tion II, we conduct a brief literature review of related studies
on IIoT systems and deep learning techniques. In Section III,
we brief the key techniques of IIoT, edge computing, and deep
learning. In Section IV, we introduce our approach in detail.
In Section V, we define the scenario, introduce the testbed
settings and experimental design, and define the evaluation
metrics. In Section VI, we present the evaluation results.
In Section VII, we discuss some further issues. Finally, we
summarize the paper in Section VIII.

II. RELATED WORKS

In the following, we review some existing research works
that are relevant to our study. In the smart manufacturing

system, the digital twin is a digital copy of real physical
systems [10]. It is easy for operators and managers to emulate
the operations on this digital system to avoid unexpected
results. The key concept of the digital twin is utilizing massive
data to create the digital model. For example, Qi et al. [11]
reviewed massive data and digital twin, and compared differ-
ences between massive data and digital twin in manufacturing.
Likewise, Canedo et al. [12] proposed a digital twin model to
simulate the life-cycle of IIoT systems, which simulates IIoT
services, objects, and the communications between the objects.
Likewise, Tao et al. [13] proposed a framework of digital twin-
driven product design and conducted a case study to evaluate
its effectiveness.

Related to computing aspects of IIoT, fog/edge computing
has been considered as a viable computing infrastructure to
offload computation tasks in IoT [14]. For example, Peralte
et al. [15] proposed a fog computing-based scheme that
introduces a low complexity computational layer between the
cloud and IoT nodes. Yu et al. [5] conducted a comprehensive
survey on edge computing and clarified how to leverage
edge computing to support IoT. Li et al. [16] introduced
the software defined network (SDN) to incorporate with edge
computing and proposed an adaptive transmission architecture
to improve network latency. Likewise, to optimize cloud
computing in IIoT systems, Xu et al. [17] proposed a cloud-
based architecture for IIoT systems and provided key services
defined in different layers that are arranged in a cloud structure
so that on-demand computing services with high reliability,
scalability and availability can be supported.

Control of large-scale heterogeneous industrial systems re-
main a challenging problem so that powerful and efficient
computation platforms and data analysis methods are neces-
sary. As one of the most popular data-driven big modeling
methods, deep learning techniques have been widely used in
IoT and some existing studies have focused on utilizing deep
learning techniques to assist in network control in IIoT sys-
tems. For example, Jiang et al. [18] utilized the deep learning
techniques to improve the performance of the networks, such
as massive Multiple Input Multiple Output (MIMO) antennas,
ultra-dense small cell network, device-to-device communi-
cations, and so on. Likewise, Zhu et al. [19] utilized Q-
learning to optimize the packet transmission schedule for IIoT
applications. Furthermore, some research efforts aim to utilize
the deep learning techniques to improve the performance of
IoT applications. For instance, Mocanu et al. [20] designed
different machine learning models to predict and classify the
energy disaggregation task. Likewise, Huang et al. [21] inves-
tigated a deep learning-based scheme to perform forecasting
of electrical loads.

In addition, some studies have been devoted to optimizing
the performance of deep learning models, such as reducing
time complexity and increasing accuracy, among others. For
example, Zhang et al. [22] utilized the tensor-train deep
computation model to compress hierarchical features so that
more features can be trained in limited tensor space. Specif-
ically, the tensor-train deep computation model compresses
the features by converting the conventional dense weights
to tensor-train format. By doing this, the proposed model
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could improve training efficiency and reduce memory space.
Moreover, addressing the issue related to a lack of training
samples, Zhang et al. [23] proposed an adaptive dropout
to prevent deep learning models from overfitting, which is
caused by a lack training samples. They designed a distribution
function to determine the dropout rate of each layer. Then,
a maximum entropy-based outsourcing selection algorithm
was designed for selecting appropriate samples. Finally, they
optimized the existing supervised learning model to fit the
adopted adaptive dropout algorithm.

In contrast, two unsolved problems are tackled in our study.
First, we focus on offloading the deep learning tasks from
cloud servers to edge nodes, which reduces the amount of net-
work traffic. Meanwhile, we optimize the deep learning model
to reduce computation requirements and improve execution on
edge nodes. Second, we utilize the distributed deep learning
model to address the manufacturing components classification
problem. We design an IIoT scenario and select the real-world
dataset to validate the effectiveness of our model.

III. PRELIMINARIES

In this section, we introduce the topics of IIoT, edge
computing, and deep learning.

IIoT: Generally speaking, IIoT provides the network infras-
tructure for connecting IoT devices so that the monitoring and
control of industrial manufacturing systems can be supported.
From a cyber-physical system perspective, it is composed of
both the physical subsystem and the cyber subsystem, which
interact with each other so that the manufacturing process
can be monitored and controlled with the aid of advanced
information communication techniques. By interacting with
computing and networked objects in the physical subsystem,
IoT devices (sensors, actuators, etc.) collect data, utilize the
network subsystem to transmit the data to the operation center,
in which the data will be further analyzed to assist system
decision making, and receive data to conduct actuation and
modification of physical assets. As a kind of distributed
system [24], all IoT devices in IIoT systems connect via
communication networks. In IIoT, as numerous applications
are time-sensitive, network performance is the key factor that
affects the performance of IIoT applications. Nonetheless, to
support automation and intelligence for IIoT applications, a
large amount of data will be collected and analyzed. While
more data can provide better intelligence to IIoT applications,
transmitting massive data through the network could lead
to network congestion and further affect the monitoring and
control performance of IIoT applications.

Edge Computing: Edge computing, with a similar scope
to fog computing, which extends cloud computing to the
network edge, is a distributed computing architecture to offload
computation tasks from the cloud to edge nodes that are close
to end-users [5], [6]. Moreover, edge computing offers latency
reduction benefits for some time-sensitive applications. Thus,
it is viable to leverage edge computing to support IIoT so that
big data analysis tasks can be offloaded and the amount traffic
transmission can be reduced. Nonetheless, edge nodes have
limited computation power and generally cannot handle highly

extensive computation tasks. Furthermore, the communication
and synchronization of edge nodes could affect the perfor-
mance of edge computing, as computation tasks are distributed
to heterogeneous edge nodes that must cooperate. Thus, how
to reduce the computation demand and transmitted traffic
overhead to the network are key issues for edge computing-
based IIoT systems.

Deep Learning: As we discussed above, the key to au-
tomation and intelligence for IIoT is data analysis. One of the
most popular data-driven modeling technique is deep learning.
A number of deep learning techniques have been widely
deployed in regression, classification, and forecasting [8],
[25], and have shown greater potential compared with other
data analysis schemes. Generally speaking, the deep learning
model is fed a training dataset and utilizes various methods
of gradient descent. Nonetheless, the complexity, diversity,
and integrity of the training dataset could significantly affect
training results. Training with sufficiently larger datasets could
result in more accurate output from equivalent models (shape,
layers, and activation, among others). Nonetheless, training on
large datasets requires high computational power.

Furthermore, the data is continuously collected and increas-
ing, and the demands of computation increase accordingly.
Thus, it is difficult to handle such a task with only one
computation node. There are two possible ways to tackle
this issue. One way is to optimize the deep learning model
so that the computation requirement can be reduced. The
other is to distribute the deep learning model to a group of
computation nodes, in which distributed learning is conducted.
As the computation can be subdivided and distributed, the
computation time in total could be improved.

IV. OUR APPROACH

In this section, we introduce our approach in detail. Partic-
ularly, we first outline the design rationale, detail the system
models, and compare the performance of cloud-based and
edge-based deep learning schemes. We then propose our edge-
based deep learning model. Table I lists key notations in this
paper.

A. Design Rationale

Based on the discussion above, we formalize the problem
of IIoT systems. Fig. 1 illustrates the problem space of IIoT
systems, which consists of three dimensions (i.e., network,
computation, and system structure). The solid blue sectors in
the figure indicate our area of focus. In this study, we focus
on utilizing edge computing to offload deep learning from the
cloud, as it can reduce network traffic and mitigate congestion.
Furthermore, we optimize the deep learning model and reduce
the computation requirements of the deep learning process to
deal with edge nodes that have less computation power than
cloud servers. Our goal is to design an optimized deep learning
model that is tailored to the edge computing platform so that
both computation time and network latency can be reduced.

We now introduce our design rationale which focuses on
the following issues:
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Fig. 1. The Problem Space of the IIoT

Network Performance: The network system in IIoT pro-
vides communication infrastructure for the data exchange
between subsystems. Moreover, in the centralized IIoT system,
both control and data analysis processes are maintained in the
datacenter cloud, which is denoted as the cloud-based system.
In such a system, the raw datasets need to be uploaded to
the datacenter, resulting in large data flows that can occupy
the network resources and affect control signal transmission.
As the control signal is the core heartbeat in the IIoT system,
variability in the transmission of control signals could signif-
icantly affect the entire IIoT system. Thus, the effectiveness
of the network system directly affects the performance of the
IIoT system as a whole and is a key factor in IIoT. To this end,
we focus on the design of an edge computing-based system to
offload the data analysis process from the cloud to the edge
so that the amount of network traffic can be reduced.

Deep Learning Model Performance: Deep learning is a
popular data-driven modeling scheme, which has shown great
potential in IIoT systems. Powerful computation support is
required for the training process of deep learning models, in
order to obtain accurate results. Commonly speaking, edge
nodes have less computation power than the centralized cloud
servers. If the data analysis process is moved from cloud
to edge, we need to optimize the deep learning model so
that the demands of computation power can be reduced. The
complexity of deep learning model implementation determines
the computation requirements in the training process. For in-
stance, in the CNN model, the number of convolutional layers
affect the complexity directly. Thus, we focus on reducing the
number of convolutional layers and optimizing their size to
reduce the complexity of the CNN model while maintaining
equivalent performance.

System Performance: As we discussed above, deploying
deep learning to the edge and reducing the computation
requirements of the deep learning model are two viable
directions to improve the performance of the IIoT system. As
each approach could affect system performance, to improve the
entire system performance, we need to realize both approaches
simultaneously.

In the following, we first propose an optimized CNN model
to reduce computation cost. We then deploy the proposed CNN
model to the edge node and compare its performance with the
cloud-based CNN model as a baseline for comparison.

TABLE I
NOTATIONS

Symbols Descriptions

T Computation time for CNN model
c Number of image channels
m Number of convolutional filters
C Results from prior convolutional layer
I,K Input of CNN model and convolution kernel
P Pooling result

z, w, b Forward propagation result, weight, and bias
δn−1 Backward propagation result for layer n− 1

Lossj The loss value after layer j
α Learning rate
Td System delay for cloud-based model
Tc Data collection time
Tt1 Transmission time (sensors to edge nodes)
Tr Data receiving time for edge nodes
Tt2 Transmission time (edge nodes to servers)
Tp Data analysis time for cloud-based model
Ds Data size collected by each sensor
De Data size received by each edge node
T e
d System delay for edge-based model
T e
p Data analytical time for edge-based model
T e
r Data receiving time for the server

B. Deep Learning Model

1) Dataset Selection: In an IIoT environment, one impor-
tant task is the detection and identification of different indus-
trial objects from images and video, which may be produced in
a variety of applications. To evaluate the performance of the
proposed model, we choose the T-Less dataset [26], which
is a set of images of different industrial components. The
T-Less dataset is a public dataset of 6D posed texture-less
rigid objects. The T-Less dataset includes over 105 images
with 30 different industrial components captured by cameras
with fixed angles. Each component includes 1,260 ‘.png’
image files at 480 × 480 pixels each. The training images
contain each individual object with a black background, while
the test images show twenty table-top scenes with arbitrarily
arranged objects [26]. The images show different angles of
each component with RGB channels. Fig. 2 shows some
samples from the dataset. From these examples, we can see
that some components have similar shapes or sizes, such
as objects 5, 6 and 10. In addition, some components are
assembled by other components, such as object 9, which is
assembled from objects 6 and 10. This is common in industrial
environments, where some components are parts of others.
This unique characteristic of the dataset can help us evaluate
the applicability of our algorithms in real-world industrial
environments.

2) CNN Model Design: We now introduce the CNN model
design. First, we identify the deep learning model. As illus-
trated above, the training datasets are images in our case, and
utilizing the CNN model is one of the general approaches
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Fig. 2. Examples of the T-Less Dataset

for image processing [27]. Thus, based on the conventional
CNN model, we propose our optimized model in our IIoT
scenario. Since the training process of the CNN model is
a black box process [28], we need to define and optimize
the parameters of the model. The number of convolutional
layers is an important parameter in a CNN model, affecting
performance directly [29]. To find an effective neural network
structure, we create several models with different numbers
of convolutional layers and compare the performance. Also,
the learning rate is another important parameter for the CNN
model that we need to tune, as it affects the convergence
speed of the model. Identifying a suitable learning rate for
a CNN model could enable faster convergence and desirable
accuracy. In the following, we discuss the details of parameter
optimization.

Fig. 3. Test Accuracy for Different Number of CNN Layers

Fig. 4. Training Speed for Different Number of CNN Layers

Number of Convolutional Layers: Figs. 3 and 4 illustrate

the performance of the CNN models with different numbers
of layers. Particularly, Fig. 3 shows the classification accuracy
of the CNN models with different numbers of convolutional
layers. Here, the x-axis represents the number of convolutional
layers and the y-axis represents the classification accuracy.
Note that the popular CNN model, LeNet-5 [30], has 6
convolutional layers and 2 full-connection layers, and another
popular CNN model, VGG-16 [31], has 16 convolutional
layers and 1 full-connection layer. It is also worth noting that
existing studies have shown that these CNN models perform
better than most on image processing tasks [32], [33]. Thus,
we use VGG-16 as a baseline model, which is known as
one of the most accurate CNN model [31]. The experimental
results of our comparison illustrate that classification accuracy
increases rapidly when the number of convolutional layers
increases from ‘1’ to ‘4’. When the number of convolutional
layers is larger than ‘4’, the classification accuracy observes no
significant change. Fig. 4 illustrates the relationship between
the training speed and the number of convolutional layers. We
find that the training speed continually drops as the number of
convolutional layers increases, but the rate of decrease drops as
well. Thus, based on the performance, we identify the number
of convolutional layers for our case is ‘4’.

Learning Rate: The learning rate is another important pa-
rameter in the CNN model that controls how much the model
can adjust the weights of the neural network with respect to
the loss gradient. Table II illustrates the identification process
for the learning rate. Setting the learning rate to ‘0.05’ and
‘0.01’ results in the gradient divergence, making the loss of
the model approach infinity (NaN). In the opposite, setting
the learning rate between ‘0.005’ to ‘0.001’, the convergence
speed decreases. From the table, we observe that, while setting
the learning rate to ‘0.005’ obtains the faster convergence
speed, the convergence process is not stable. Thus, we set
the learning rate to ‘0.004’ for our model.

TABLE II
LEARNING RATE IDENTIFICATION

Learning Rate Training Steps Training Loss
0.05 15 NaN

0.01 107 NaN

0.005 1500 0.086

0.004 1500 0.083

0.003 1500 0.081

0.002 1500 0.073

0.001 1500 0.068

3) CNN Model Analysis: In the following, we analyze the
proposed CNN model in detail.

Time Complexity: We now analyze the time complexity
of the proposed CNN model. Fig. 5 illustrates the structure
of the CNN model. As we mentioned before, we select four
convolutional layers to extract feature maps. Moreover, we
deploy a pooling layer in the model following each convolu-
tional layer (i.e., the total number of pooling layers is four),
in order to further compress the feature maps. Based on the
mathematical definition of both the convolutional and pooling
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layers, the total computation cost of the CNN model is

T =
∑n
i=1

[
c ·
(
L2
Ki

+ 1
)
· L2

Ii
+
(
LIi+1

/LPi

)2] ·mi.

(1)
Here, we formalize the computation cost of the CNN model by
utilizing the number of RGB channels for the input images,
the number of filters, and the number of the convolutional
layers (all symbols in the equation have been defined in Ta-
ble I). Meanwhile, we assume the length of the convolutional
kernel is LKi

and the length of the input features is LIi , where
i represents the number of inputs. Also, we denote LPi as
the size of the pooling layer. From Equation (1), the time
complexity of the CNN model can be represented by

O
(∑n

i=1 L
2
Ki
· L2

Ii
·mi

)
. (2)

By utilizing Equation (1), we are able to evaluate the
number of computations required for each CNN model. The
proposed CNN model has 4 convolutional layers and the
number of calculations for the proposed CNN model is ap-
proximately 2 million per image. In addition, the LeNet-5
model has 6 convolutional layers and VGG-16 model has 16
convolutional layers. Based on the calculation, the number of
computations for LeNet-5 and VGG-16 are approximately 7.5
million calculations per image and 31 million calculations per
image, respectively. The results clearly show that the number
of computations carried out by the proposed CNN model is
the lowest, directly correlating to a reduction in computation
overhead.

Forward Propagation: We analyze the forward propaga-
tion of the proposed CNN model. The CNN model consists of
two components: one is the convolutional layer and the other
is the fully connected layer. The forward propagation for the
convolutional layer can be denoted as

Cn+1 = f(
∑m−n
s=0

∑n
s=0 I

(s,s+n)
(n,n) �K(n,n) + b),

Pn+1 = max(Cn+1),

f(z) = softmax(z) = ezi∑k
j=1 e

zi
.

(3)

Here, Cn+1 denotes the results after the prior convolutional
layer, I denotes the input and m denotes the size of the input,
K denotes the convolution kernel, and n denotes the size of the
convolution kernel. The expression I(s,s+n)(n,n) �K(n,n) represents
convolution operation, and the operator “�′′ is the dot product
for each element at the corresponding location in matrix I
and K. Also, s indicates the start location of the convolution
calculation and f(z) is the softmax function, where k is the
length of z. We assume that the step size is ‘1’ and b indicates
the bias. We utilize the maximum pooling function to further
compression the feature size.

The forward propagation for the full connect layer can be
represented by

zn+1 = wn+1an + bn+1,

an+1 = f(zn+1),

f(z) = ReLU(z) = max {0, z} .
(4)

Here, we denote n as the layer number, z as input, a as output,
and f(z) as activation function. We use the Rectified Linear
Unit function (ReLU) as the activation function.

Fig. 5. Structure of CNN Model

Backward Propagation: Backward propagation is one key
feature for deep learning, as it updates the weights and bias
in order to tune the model and obtain accurate results. The
backward propagation is related to the partial derivative. For
the proposed CNN model, the backward propagation of our
CNN model can be represented by

δn−1 = δn
∂zn
∂zn−1

= δn · rot180(Kn,n)� f ′(zn−1). (5)

Here, rot180 indicates the rotation of the convolution kernel
by 180 degrees.

The backward propagation for the fully connected layer is
the partial derivative for the softmax regression, which can be
represented by

∂aj
∂zi

=
∂

∂zi

(
ezj∑T
k=1 e

zk

)
=

{
aj(1− aj), if j = i;

−ajai, if j 6= i.
(6)

Note that the above equation can be simplified in two cases,
i.e., j = 1 and j 6= i.

4) Edge-Based CNN Model: Based on our proposed CNN
model, we tailor the model to operate in a distributed manner
and deploy the model in edge computing nodes. The new
model is denoted as the edge-based CNN model. Generally
speaking, the proposed edge-based CNN model is essentially
a data parallel distributed CNN model that generates a CNN
graph and assigns it to edge nodes. By doing this, all the edge
nodes utilize the same CNN graph and are fed with different
data subsets. Then, the training parameters are uploaded to the
parameter server (i.e., aggregation node) to update the model.
Thus, the edge-based CNN model can offload the data analysis
process from the cloud to the edge so that the network traffic
in the IIoT network can be reduced.

In this study, we utilize synchronous stochastic gradient
descent to update the ‘weights’ and ‘bias’ for all the workers
as edge nodes. We set n as the number of workers and
m as the number of samples trained on one worker. In the
following, we show that the edge-based CNN model has the
same convergence process as the cloud-based CNN model.

Here, we use the following equation to represent the math-
ematical calculation of the synchronous stochastic gradient
descent, which executes the training on a single machine,

Ki+1 = Ki − α
n·m

∑n·m
j=1

∂Lossj
∂Ki

. (7)

Here, data size is n ·m and the learning rate is α. Also, we
distribute the model to n nodes and assign dataset blocks of
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size m. Thus, we obtain

Ki+1 =
1

n

n∑
w=1

Ki+1,w, (8)

=
1

n

n∑
w=1

(Ki −
α

m

wm∑
j=(w−1)m+1

∂Lossj
∂Ki

), (9)

= Ki −
α

n ·m

n·m∑
j=1

∂Lossj
∂Ki

. (10)

C. Performance Analysis

We now analyze the performance of the cloud-based and
edge-based models. In our case, we use the total processing
time as the metric for system performance. The total process-
ing time consists of two parts: (i) computation process time,
and (ii) network transmission time. In the following, we will
model and analyze these two parts individually.

1) System Latency: To measure network performance, we
measure the system latency, which is defined as the total time
of data transmission and deep learning processing for both
models. Our analysis shows the edge-based models always
has less delay than cloud-based model.

Cloud-Based Model: For the cloud-based model, the sys-
tem latency can be represented by

Td = Tc + Tt1 + Tr + Tt2 + Tp,

Tt1 = Ds

R1
,

Tt2 = n·Ds

R2
,

Tp = f(mn ·Ds) + cr.

(11)

We assume the collection time Tc and receiving time Tr are
constant and can be represented by Tc = cc and Tr = cr. We
also denote Ds as the amount of data that is collected by each
sensor, and R1 as the data rate of the upload link from the
sensor to the edge node. Finally, we denote m as the number of
edge nodes and obtain the process time Tp, and further denote
f(x) as the time complexity of the deep learning algorithm.
Recall that, Td, Tc, Tt1, Tr, Tt2, and Tp have been defined in
Table I.

Edge-Based Model: For the edge-based model, we offload
the deep learning from the cloud to the edge. Thus, the edge
nodes execute the deep learning algorithm instead of the cloud
server. This can be formalized by

T ed = Tc + Tt1 + T ep + T et2 + T er ,

T ep = cr + (m+ 1)f(n ·Ds),

T et2 = De

R2
.

(12)

Similar to the cloud-based model that we have already defined,
T ed is the system delay. The differences are that T ep represents
the process time on edge nodes and T er represents the receiving
time cost for the cloud server, which is a constant cer. In the
edge-based model, T ep equals the sum of the receiving time cr
and the training time. De represents the output data size for
each edge node, and R2 is the data rate of the link from the
edge node to the cloud. Thus, the transmission time T et2 is the
data amount divided by data rate.

2) Network Overhead: In our case, the data transmission
time can be represented by

∆Tnet = T et2 − Tt2. (13)

We compare the network overhead of the two models by
computing the difference ∆Tnet between them. Because the
proposed CNN model reduces the input image size as we
discussed in Section IV-B3, De is always smaller than nDs,
and ∆Tnet < 0, indicating that the edge-based model achieves
better network performance than the cloud-based model.

3) Computation Overhead: In the edge-based model, the
computation time T ecom is

T ecom = T ep + T er = cr + (m+ 1)f(n ·Ds) + cer, (14)

In the cloud-based model, the computation time Tcom is

Tcom = Tr + Tp = cr + f(mn ·Ds) + cr. (15)

According to Equation (2) in Section IV-B3, the time
complexity of our deep learning algorithm f(x) equals θ(n2).
Then, we compare the system latency of two models by
computing the difference ∆T between these two models,
which can be represented by

∆T = T ecom − Tcom, (16)
= (m+ 1)f(n ·Ds)− f(mn ·Ds) + (cer − cr),(17)
= (m+ 1)n2D2

s −m2n2D2
s + (cer − cr), (18)

= −(m− 1

2
)2(nDs)

2 +
5

4
(nDs)

2 + (cer − cr),(19)

= −(nDs)
2[(m− 1

2
)2 − 5

4
− (cer − cr)

(nDs)2
]. (20)

Thus, we have

∀m ∈ N ∧m >
√

cer−cr
n2D2

s
+ 5

4 + 1
2 :

(m+ 1)n2D2
s −m2n2D2

s − (cer − cr) < 0.
(21)

This indicates that when m >
√

cer−cr
n2D2

s
+ 5

4 + 1
2 , the edge-

based model always has better performance than the cloud-
based model.

V. IMPLEMENTATION AND EXPERIMENTAL DESIGN

In this section, we introduce the implementation and ex-
periments to validate our approach in detail. In the following,
we first define the scenario, and setup the testbed on Google
Cloud Instances [34] based on the scenario. Then, we design a
set of experiments to evaluate the performance of the proposed
model. Finally, we describe several evaluation metrics of the
experiments.

A. Scenario

According to Section IV, we now define one representative
scenario in IIoT. In a smart factory, ‘30’ different kinds of
components are produced by different production lines and
the system is required to classify the different components
in the assembly center so that the product can be assembled
properly. To do this, the cameras are deployed in different
production lines, taking the images of components and sending
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the images to gateways. We denote those gateways as edge
nodes. Then, edge nodes send all the images to the cloud
for further analysis in order to prepare the classification. In
this case, sending all the images to the cloud could result in
significant network traffic congestion by consuming substantial
network resources. Furthermore, uploading all the data to the
cloud increases the total data processing time significantly
because of the transmission time cost.

In our scenario, we focus on offloading the data analysis
process from cloud to edge nodes (i.e., gateways). We involve
a total of ‘3’ edge nodes and each node receives images from
‘10’ different production lines. Specifically, components ‘1’
through ‘10’ are processed by Edge Node ‘1’, components ‘11’
through ‘20’ are processed by Edge Node ‘2’, and components
‘21’ through ‘30’ are processed by Edge Node ‘3’. All edge
nodes are connected by wired networks. After receiving the
images from the production lines, the edge nodes begin with
the data analysis process and upload only the analytical results
to the cloud instead of the raw dataset. In our case, the training
process of the CNN model is offloaded to the edge computing
nodes and the edge nodes obtain the well-trained model after
training. Then, the nodes send the well-trained models to the
cloud, and the cloud classifies the different components by
using the well-trained models.

B. Testbed Settings

To implement the scenario and proposed edge-based CNN
model, a suitable and high-performance computing platform
is important. Recall that the proposed model in Section IV-B
requires an edge computing platform and high computation
power for each computing node. Furthermore, to compare
the training performance between cloud-based and edge-based
deep learning, the computation power should be flexible and
adjustable. Based on the requirements, we utilize Google
Cloud Instances [34] and configure a group of instances to
form a hierarchical computing network.

Fig. 6. Testbed Structure

Computing Node Configuration: We utilize five Google
Cloud Instances as the computing nodes in our testbed. Three
are defined as edge nodes and the others are defined as cloud
servers, which are shown in Fig. 6. Meanwhile, according
to the different roles of the computing nodes in distributed
deep learning, we define one of the cloud servers as the
parameter server and the other as the master node. The three

edge nodes are worker nodes. All the instances are configured
with 8 core Intel CPU, 32 GB memory and each instance is
running Ubuntu 18.04 Long Term Support (LTS) operating
system. We selected TensorFlow Application Programming
Interface (API) and Python to realize the proposed model. We
installed Anaconda 3, which is a popular Python distribution
for deep learning and data science on the Linux platform.
The TensorFlow virtual running environment has built using
TensorFlow 1.12, Keras 2.2.4, and Python 3.6. Finally, we
deployed the Python code to the different nodes.

Network Configuration: As we discussed in Section IV-B,
the workers in the distributed CNN model need to connect with
the parameter server and the master node in order to exchange
weights w and bias b. The IP address 10.132.0.1 is configured
as the gateway. Then, we assign the computing nodes with
IP addresses in the network segment to ensure all nodes are
able to connect with the others. The instances in the Google
cloud are organized by wired network, and we define the roles
(parameter server and worker) of the different instances in the
Python code and assign IP addresses accordingly.

Computation Power Estimation: Since the computation
power is difficult to calculate and the performance depends
on the hardware and software, to be fair, we utilize the
proposed CNN model to estimate the computation power
for several Google Cloud Instances with different hardware.
In particular, we first set the instance with a 4 core CPU
and 16 GB memory at the beginning and execute the CNN
model to obtain the running speed. After that, we update the
CPU to 8 cores and to 32 GB memory, and then increase
the number of cores and memory size until reaching 32
cores and 128 GB memory. Fig. 7 illustrates the results of
computing speed for several Google Cloud Instances with
various hardware configurations. The x-axis is the hardware
configuration and the y-axis shows the number of training
steps completed in one second. As we configure the edge-
based testbed with three edge nodes (workers), to compare the
performance between the edge-based architecture and cloud-
based architecture, the total computation power should be the
same for both architectures. Based on our configuration for the
edge-based testbed that has 8 CPU cores and 32 GB memory,
according to the estimation shown in Fig. 7, we select 32 core
CPU and 128 GB memory for the cloud-based testbed.

C. Experimental Design

Following the testbed setup and configuration, we design
experiments to evaluate our edge-based CNN architecture. In
the following, we introduce the design of experiments in detail.
We first focus on the defined IIoT scenario, which utilizes
the industrial components dataset for training and testing. We
then optimize the edge-based CNN model and evaluate its
performance.

1) Data Preparation: Based on the T-Less dataset that
we described in Section IV-B and the designed testbed, we
first compress the images to 128 × 128 pixels, in order to
reduce the computation pressure on the computing nodes.
Furthermore, since all the images have black backgrounds
and the objects are located in the center of the image with
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Fig. 7. Computation Power Estimation, with 95 % confidence intervals shown

no texture and color, we transform all the images from
three-channel RGB to single-channel grayscale images. The
preprocessing is able to significantly reduce the data size
and the computation amount. Then, we randomly select 1000
images as the training dataset and 260 images as the testing
dataset from each component. After identifying the training
and testing datasets, we use the labels ‘1’ through ‘30’ to
mark the different components. For the cloud-based model, we
utilize all ‘30’ components as the training and testing datasets,
while for the edge-based model, we divide the dataset into
three parts: labels ‘1’ to ‘10’, labels ‘11’ to ‘20’, and labels
‘21’ to ‘30’. We then use the different training and testing
datasets to train the different edge computing nodes. Finally,
the standardization input dataset ‘tfrecord’ files are generated
by the Python program.

2) Deployed Models: We now present the deployed models.
First, we implement the CNN model on a single Google
Cloud Instance as the cloud-based CNN model. We set the
instance with ‘3’ CPUs, where each CPU has ‘8’ cores and
the total system memory is 128 GB, the same computation
power as the three edge workers in the edge-based CNN model
described in Section V-B. We evaluate the performance of the
cloud-based CNN model, which we utilize as a baseline for
comparison. Then, we deploy the edge-based CNN model on
the testbed and compare its performance with the baseline
model. Second, we modify several mature CNN models, such
as LeNet-5 [30] and VGG-16 [35], to run in a distributed
manner, and deploy them in the testbed. We then compare
the performance between our proposed CNN model and the
existing CNN models.

D. Metrics

Based on the outlined scope and experimental design, we
consider the following performance metrics to evaluate the
proposed CNN model.

Training Loss: The training loss is one important metric
for deep learning models. We select the softmax function to
classify the image and the cross entropy loss function to eval-
uate the total loss. The softmax regression can be represented
by Pj = eaj∑T

k=1 e
ak

, which indicates the probability that the

output belongs to the jth classification. Here, T indicates the
number of the classifications, aj is the jth element in the T×1
vector, and in our scenario, T is set to 10. Then, we obtain the
cross entropy loss function: Loss = −

∑T
i=1 yi ln ai, where yi

represents the real value and ai represents the result from the
softmax regression. In general, a smaller loss value indicates
a better model.

Classification Accuracy: The classification accuracy is
another important metric for evaluating deep learning models
and represents the success rate of the classification. Higher
classification accuracy means better performance of the model.
In our evaluation, we select classification accuracy as the
evaluation metric to measure the performance of the purposed
CNN model.

Time Cost: Another important metric for the evaluation is
the total time cost. Recall in our edge-based model, we define
the total processing time T ed = Tc +Tt1 +T ep +Tt2 +T er , and
the time cost difference between cloud-based and edge-based
models appears in both training time T

′

p and transmission
time Tt2. The training time represents the efficiency of the
CNN model, while the transmission time represents the output
size of the CNN model. Thus, both the training time and
transmission time are key metrics to quantify the performance
of the CNN model.

VI. EVALUATION RESULTS

We now detail the evaluation results of the experiments
outlined in Section V. In the following, we first present
the comparison of cross entropy loss and classification accu-
racy between the cloud-based and edge-based CNN models.
We then present a comparison of results obtained from the
proposed edge-based CNN model and several existing CNN
models. Because of the program initializes ‘weights’ and ‘bias’
randomly in the experimentation. Thus, the experiment results
may be different. To be fair regarding the experimental results,
we run the program 10 times and obtain experimental results
to draw the error bar with 95 % confidence intervals. Finally,
we show the training time consumption for different models.

A. Cloud-Based CNN Model vs. Edge-Based CNN Model

As we discussed in Section V-C, we deploy the proposed
CNN model in both cloud-based and edge-based environ-
ments. For the fairness of comparison, the computation power
of the two environments is the same. Fig. 8 illustrates the
comparison of cross entropy loss between cloud-based and
edge-based CNN models. In the experiments, we execute
the edge-based CNN model 10 times and set the confidence
interval. Because the initialization of the CNN model assigns
weights and bias randomly in the Python code, the training
results may differ upon each execution of the CNN model.
The evaluation results show that the edge-based CNN model
achieves larger loss values before 500 training steps, and then
the loss of the two CNN models is approximately the same.
The loss value in the 3000th step is 0.00135 for the cloud-
based model and 0.00151 for the edge-based model. Thus, the
two models have equivalent performance, the only difference
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is that the edge-based model achieves convergence at a slower
speed prior to 500 training steps.

Fig. 9 illustrates the classification accuracy for the two
models, which we have divided into three parts: (i) training
steps 0 to 500, (ii) training steps 500 to 2000, and (iii) training
steps 2000 to 3000. In the first part, the cloud-based model
achieves higher accuracy than the edge-based model. This
is because the cloud-based model can utilize the complete
and complex training dataset, rather than a limited subset
of the data available to each edge node. Thus, the accuracy
increases faster than the edge-based model. In the second part,
the workers have trained enough datasets and uploaded the
parameters to the server. Further, the different workers are fed
by different subsets of the total dataset which is equivalent
to data sampling, and it obtains better performance than the
cloud-based model in this stage. During the steps 2000 to
3000, the two models show the same performance, matching
the theoretical analysis in Section IV-B4.

Fig. 8. Loss Comparison Between Cloud-Based and Edge-Based Model, with
95 % confidence intervals shown

Fig. 9. Accuracy Comparison Between Cloud-Based and Edge-Based Model,
with 95 % confidence intervals shown

B. Proposed CNN Model vs. Existing CNN Models

After the evaluation between cloud-based and edge-based
models, we deploy several existing CNN models to the edge
nodes and compare their performance. We utilize existing code

implementations [36] and modify the code with TensorFlow
distribution methods. Thus, all the existing CNN models are
implemented in the distributed manner in order to make a
fair comparison between the proposed CNN models. Fig. 10
illustrates the cross-entropy loss for each CNN model. The
losses for all the models have similar patterns. The losses
decrease rapidly before the 500th step and are stable after
the 500th step. The results illustrate that the proposed CNN
model achieves the same loss performance compared with
the existing CNN models. Furthermore, Fig. 11 illustrates
the classification accuracy for all the CNN models. The
performance of the proposed CNN and the VGG-16 models
reach approximately 95 % accuracy, while the LeNet-5 model
reaches 89.6 % accuracy. It clearly confirms that the proposed
CNN model and the VGG-16 model have similar classification
accuracy and their performance is better than the LeNet-5
model.

Fig. 10. Loss Comparison for Different CNN Models, with 95 % confidence
intervals shown

Fig. 11. Accuracy Comparison for Different CNN Models, with 95 %
confidence intervals shown

C. Training Time Consumption Comparison

We also compare the training times for different CNN
models. Fig. 12 illustrates the time costs of four CNN models:
the proposed edge-based model, the VGG-16 model [35],
the LeNet5 model [30], and the cloud-based model from

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on February 21,2020 at 17:21:18 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2963635, IEEE Internet of
Things Journal

11

the training process. Here, the x-axis represents the different
CNN models and the y-axis indicates the total time cost in
minutes. Further, each model is executed 10 times and we
utilize 95 % confidence intervals. The evaluation results show
that the training time cost for the cloud-based model is over 85
minutes, while the edge-based model is less than 35 minutes,
approximately 38 % of the time cost for cloud-based model.
Meanwhile, we obtain the time cost for the distributed LeNet5
and VGG-16 models as well. From the figure, we observe that
our model benefits from the parameter optimization on this
specific dataset, as our proposed model achieves the smallest
computation time in the convolutional layers to abstract the
features, leading to the shortest computation time of all the
schemes.

Fig. 12. Training Time for Different CNN Models, with 95 % confidence
intervals shown

To summarize, our proposed edge-based CNN model can
not only reduce the training time, but also maintain equivalent
performance, compared to the existing CNN models. Further-
more, as discussed in Sections IV-C and IV-B, reducing the
output feature size could improve the network performance.
Thus, the proposed edge-based CNN model reduces both
network traffic overhead and CNN training time simultane-
ously, and our proposed CNN model improves the system
performance for our IIoT scenario.

VII. DISCUSSION

In this study, we propose an edge-based CNN model which
is deployed on edge nodes to offload the training process from
the cloud to the edge, thereby avoiding the data exchanges
between servers and IoT devices and reducing network traffic
in IIoT. As possible extensions of our work, we consider
possible future directions toward improving IIoT with respect
to extending learning models, security concerns, and the co-
design of control, networking, computing, and learning.

Learning Model Extension: In this paper, we have vali-
dated that the proposed edge-based CNN model achieves better
performance than existing CNN models on the particular T-
Less dataset. However, the applicability and extensibility of
the proposed model remains unexplored. Generally speaking,
as the deep learning process is a black-box process, a deep

learning model is generally configured and optimized only for
the specific training dataset that it was trained on. When the
training dataset changes, the system has to reconfigure, or re-
train, the deep learning model to obtain accurate results. Thus,
how to design a generalized learning model to handle different
datasets and achieve accurate results remains a challenging
problem. As ongoing research, we plan to extend our work to
apply different types of datasets to our proposed model, and
design a generic learning model to adopt multiple datasets.

As IIoT is a dynamic system, the system generates new data
constantly over time. Thus, the CNN model needs to retrain
to maintain model accuracy when the system receives new
data. The training cost increases constantly, since the size of
the training dataset increases constantly. To handle this, an
online learning strategy should be considered. Online learning
utilizes model updating instead of retraining to process the
new data, which means the model only utilizes the new
datasets to train the model instead of utilizing the entire dataset
(including old and new data), which reduces the training time.
Thus, it is possible to utilize the online learning strategy to
optimize the proposed edge-based CNN model to adapt to the
dynamic IIoT environment. Specifically, the parameter server
maintains and manages the well-trained model. Also, it defines
a suitable threshold for the classification accuracy. As the
system changes dynamically, such as through the addition of
new parameters or new productions in the system, the accuracy
of the old model will certainly drop. When the accuracy drops
below the threshold, the edge workers should update the edge-
based model by training with the newly generated datasets. To
do so, we can reduce the learning overhead and increase the
flexibility of the deep learning model for the dynamics system.

IIoT Security: The security of the IIoT system is im-
portant, how to leverage system identification, vulnerability
analysis, and resilience operations to mitigate the network
risk is one critical issue to be addressed [37], [38], [39],
[40]. In particular, as mentioned above, the automation and
intelligence of IIoT is based upon the efficacy of data analysis.
Compromising the data analysis causes the system to instigate
improper control and obtain unexpected results. To this end,
there are credible threats to the data analysis process. One
possible mechanism is that an adversary could tamper with
the labels of the datasets affect the training process and yield
incorrect analysis results when the model is deployed [41].
Furthermore, the adversary could tamper with the parameters
for the deep learning model, which also affects the training
results [42]. Since the deep learning process is a black box
process, it requires extensive experiments to determine the
level of impact of different threats on IIoT by involving a set of
metrics to conduct systematic risk assessment. Based on such
experiments, how to design effective defensive techniques to
protect the deep learning process remains another challenging
issue, which is another research direction.

To mitigate the risks of attacks, we consider several possible
solutions. First, it is critical to improve the security of machine
learning algorithms and models. Indeed, existing research
efforts have shown that adversarial learning can compromise
most machine learning models, including CNNs, DNNs, and
others [43], [44], [45]. Thus, strengthening the security of
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machine learning itself is a necessary goal. Second, because
of the wide use of machine learning in IIoT, the security
risks of machine learning inevitably affect the security of IIoT
systems. Adversaries could launch attacks against machine
learning algorithms deployed in IIoT systems so that the
performance of IoT systems could be reduced or altered. As a
typical distributed system, data in IIoT is collected by sensors
in different locations and transmitted to servers for further
analysis. We categorize the data collection process into three
phases: data collection, transmission, and processing. In fact,
adversaries could launch attacks against any or all phases (e.g.,
injecting false data in the data collection phase). Thus, an
effective end-to-end defense solution must be designed to not
only protect machine learning models and mechanisms, but
also to protect the data in the collection, transmission, and
storage processes. It is also necessary to develop recovery
mechanisms to restore IIoT systems when they are under
attack or compromised.

Co-design of Control, Networking, Computing, and
Learning: The control, networking, and data analysis are the
key components of IIoT [1]. This is equally true for IIoT,
which presents its own unique challenges and opportunities.
Thus, how to leverage these three components in IIoT systems
to optimize the existing industrial model is critical. The
control system in an IIoT environment plays a crucial role
in controlling and operating critical infrastructures, which
not only requires the network system support to transmit
the control signal, but also requires data analysis support
to make correct decisions and increase the control accuracy.
Indeed, designing the three sub-systems of control, commu-
nication, and data analysis independently creates problems.
For instance, the control system may be operated manually by
the manager/controller according to the data analysis results,
which is a gap in the IIoT automation closed loop. Further,
the network system takes the responsibility of transmitting
the datasets and control signals, and the performance of the
network system directly impacts the performance of every
other system. Thus, it is necessary to co-design these sub-
systems to interoperate cohesively.

Nonetheless, many critical issues are still open at this stage.
From the control point of view, how to manage and control
various facilities is a challenging problem. First, recall that
IoT provides ubiquitous connections, and thus integration of
control hardware and software is difficult. Also, the control
system is time sensitive, and how to guarantee the control
signal is timely and accurate is challenging. From the network
point of view, the existing network protocols do not fit low-
power IoT devices. Thus, how to integrate new network tech-
nologies such as 5G [46], [47], machine-to-machine (M2M)
communications [48], [49], and SDN [50] with IoT remains
an open issue. Another challenge is network deployment,
which includes identification, network structure, consideration
for densification, distribution, and mobility. Finally, how to
improve the efficiency of the data analysis and how to reduce
the computation requirements of the analysis process are
critical issues.

In an IIoT system, edge computing, as a new distributed
computing paradigm, can offload computation tasks from

computing centers to the network edge, so that the latency of
transmitting data collected from sensors to data analysis com-
ponents can be reduced, as edge nodes are much closer to sen-
sors. In the same way, decisions can be quickly delivered from
edge nodes to actuators. To make accurate and rapid decisions,
machine learning can be deployed at edge nodes. Nonetheless,
edge nodes have limited computation resources, it is necessary
to design cost-effective machine learning schemes that can
support edge computing-based data analytics to aid decision-
making in IIoT systems. While machine learning has achieved
great success in a number of applications, such as image/video
recognition, natural language process, and others, the design of
machine learning techniques that can deal with the exceptional
requirements of IIoT systems in terms of safety, accuracy, and
real-time response must be realized.

VIII. FINAL REMARKS

In this paper, we formalized the problem space for IIoT
in network, computation, and structure, and focused on the
offloading of the deep learning from cloud servers to edge
nodes in order to avoid the massive amount of data exchanged
between servers and IoT devices. Based on our problem
formalization, we proposed an edge-based CNN model, which
moves the CNN model used to classify the manufacturing
components in IIoT, from the cloud servers to the edge nodes.
To deploy the proposed CNN model to the edge nodes, we
optimized the parameters of the CNN model to reduce the
training time and computation time of the model. Based on
the system model, we analyzed the performance between the
cloud-based CNN model and our proposed edge-based model.
To evaluate the proposed CNN model, we designed a com-
prehensive simulation based on the Google Cloud Instance.
We also created an edge computing testbed on Google Cloud
and deployed the proposed model to the testbed. Extensive
experimental results indicate that our proposed edge-based
CNN model is capable of not only offloading the computation
to avoid massive and costly data exchanges between cloud
servers and IoT devices, but also reducing the training time
while obtaining the similar classification accuracy comparing
to several baseline schemes.
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